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The von Neumann  quan tum logic lacks two basic symmetries of  classical logic, 
that between sets and classes, and that between lower and higher order predicates. 
Similarly, the structural parallel between the set algebra and linear algebra of  
Grassmann  and Peano was left incomplete by them in two respects. In this work 
a linear algebra is constructed that completes this correspondence and is inter- 
preted as a new quantum logic that restores these invariances, and as a quan tum 
set theory. It applies to experiments with coherent quan tum phase relations 
between the quan tum and the apparatus.  The quan tum set theory is applied to 
model a Lorentz-invariant quan tum time-space complex. 

1. A CLASH OF LOGICS 

The way we express logical ideas in ordinary quantum theory and in 
the von Neumann quantum logic conflicts with the theory of Grassmann 
and Peano, beautifully expounded and developed by Barnabei et al. (1985). 

Suppose that �9 and ~b are creators (that is, creation operators, kets, 
or psi vectors) for a quantum of odd statistics, say an electron. For simplicity, 
assume 0 and d~ to be orthogonal. 

Then, according to von Neumann and Dirac, the incoherent superposi- 
tion " 0  or dp," the disjunction of 0 and +, which may also be called their 
inclusive-or combination, is represented by the projection operator or projec- 
tor P = O O * + d ~ b *  upon the two-dimensional subspace R = span(O , ~b) 
spanned by 0 and ~b. We may regard 0 0 " ,  ~b~b*, and O0*+~bd~* as 
representing classes of electrons. In the quantum logic of von Neumann, 
the fundamental entities are projectors like P = 0 0 "  and Q = ~b~b* and the 
basic operation is incoherent superposition P u Q. 
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Now, Grassmann and Peano (1888) insist that the proper way to 
represent the linear space R is not by the incoherent superposition P • Q, 
but by a product, the Grassmann product of  ~ and d~, which I write as 
~v~b, as do Barnabei et al. (1985), exactly because of this disjunctive 
interpretation. 

The Grassmann product  ~ v 6 may be expressed b3~ the antisymmetrized 
tensor product: 

~ v  4, = ~;-~ | 

where E_ is the antisymmetrizer. But this product is already used for another 
purpose in quantum theory. It represents maximal information about a pair 
of  electrons, not submaximal information about  one electron. In the usual 
quantum theory ~v~b represents a set of electrons, not a class. It is essential 
here that electrons have odd statistics. 

There is thus the following rather strange difference between classical 
logic and the yon Neumann  quantum logic. In classical logic, one algebra, 
the lattice of  subsets of  the sample space, may express either submaximal 
information about a single entity or maximal information about sets of  
entities. In the von Neumann  quantum logic two quite different algebras, 
one a lattice and the other a Grassmann algebra, are used for these respective 
purposes. Briefly, the classical algebras of  (finite) sets and classes are 
isomorphic, the usual quantum ones are not. A basic symmetry of the 
classical theory is broken in the quantum theory. 

This break in symmetry is not a necessary consequence of the difference 
between the two logics, the quantum principle of  superposition. It is a 
historical accident, and I repair it here by revising the theory of classes. I 
call the new quantum logic coherent, and the old one incoherent, after their 
basic superposition processes. 

Curiously, there is a similar discord in the writings of  Grassmann and 
Peano themselves. They develop set theory and linear geometry in parallel 
(Table I), a parallel that first becomes a correspondence in function as well 

Table 1. Correspondence Between Set Algebra and Linear 
Algebra of Peano and Grassmann a 

Set algebra Linear algebra 

Join u v Disjoin 
Meet c~ ^ Conjoin 
Null set Q~ C 1-dimensional space 
Brace {- �9 '} ? ? 
- -  None + Sum 

aPeano writes ~X for {X} and calls v and ^ the progressive and 
regressive products, respectively. 
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as form in quantum logic. But they do not perfect  this correspondence. 
Peano builds his set algebra on the join operation A w B and his linear 
algebra on the Grassmann product av/3. But the Grassmann product is 
nilpotent, a v a  = 0, while the join is idempotent, A w A = A. The two there- 
fore do not correspond. The true set-theoretic correspondent of  the Grass- 
mann product c~v/3 of spaces a and/3 is the disjoint union of sets A and 
B, which I therefore write as A v B. I call A v B the disjoin of  A and B for 
short. They would have been more consistent had they found classical set 
theory on v than w, and I do this here. This does not make set theory 
stronger. Indeed, it makes it more complicated to express relations of  
inclusion or implication within the theory. I shall not address this problem 
here. 

There is a second important discord between classical logic and von 
Neumann's quantum logic, and this, too, has its roots in a disharmony 
between the set and linear algebras of Peano. Peano's set theory has a basic 
generative process, designated by Cantor with the brace {. �9 .} and by Peano 
with the operator  ~, which forms from each set A a new set {A} = ~A whose 
sole element is A. Without the brace we can make nothing from the null 
set using v alone; with it, we can make all sets (by transfinite induction for 
infinite sets). 

Yet neither Grassmann nor  Peano nor von Neumann provides a similar 
generator for linear spaces. From the correspondent of  the null set, the 
linear space C, one can make nothing new using the v product alone. 
Grassmann's linear algebra is much weaker than his set algebra. 

Accordingly, after formulating a coherent quantum logic, I introduce 
into it a quantum operator corresponding to the {. �9 .} of Cantor and the 
of  Peano. This perfects the correspondence between sets and spaces of 
Grassmann, Peano, and Barnabei et al. (1985), and strengthens the double 
algebra of Grassmann and Peano. I designate the new algebra by SEx 
because in quantum theory, it may be interpreted as a new and stronger 
quantum logic, a quantum set theory. 

SET raises questions. If  the quantum disjunction is expressed by ~ v + ,  
how shall an electron pair be described? What use is the brace operator? 
What new physical concepts are suggested by this extension of linear 
algebra? I answer some of  these here. 

Peano explicitly proposed his set theory as a universal language for 
mathematics. Possibly SEa" is a universal language for quantum theory. 

Below I first recall the algebras of the usual quantum theory and of 
the quantum logic of von Neumann (Section 2) and classical set theory 
(Section 3) and compare them (Section 4). This reveals deficits in the 
quantum language we presently use. I repair them with the new quantum 
language, based on the ideas of Grassmann and Peano rather than von 
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Neumann, in Section 5. I translate some concepts of  the usual quantum 
kinematics into this new quantum language in Section 6, leaving much to 
be done in this direction. Most of the predicates of the new quantum 
language have no correspondent in the old. The new predicates (Section 
7) are perceived by new kinds of experiments. The results and possibilities 
are discussed in Section 8. 

2. INCOHERE1Vr QUANTUM LOGIC 

I call the object of experimental study the endosystem, and the 
experimenter and the apparatus the exosystem. This division of the entire 
system is called the quantum partition. In the quantum theory of Dirac, 
each system X is associated with a Hilbert space H(X) .  Each vector 0 in 
H ( X )  represents a coherent quantum creation process. We reason about 
the system with H ( X )  in ordinary quantum physics, as we reason about it 
with a phase space in classical physics, and this constitutes a species of 
logic, although its basic operations are those of a linear space rather than 
a lattice. It is customary to describe every pure (singlet, nondegenerate) 
quantum class (or predicate) of a system X by a projection or projector p 
onto a ray in a Hilbert space H = H ( X )  associated with X. If 0 is a unit 
vector and ~* is the dual vector in the space DH, the dual space to H, then 

P = 0 0 "  

is such a projector. The probability of a transition p ~ p '  is 

Prob(p -~ p') = Tr(pp") 

A general class is represented by a projector P onto a higher 
dimensional subspace, which may be expressed as sums of  pure projectors, 

p = p + p ' + .  �9 

which are (pairwise) orthogonal: 

pp' = pp" = . . . .  0 

The probability of a transition P-~ P'  is given by 

Prob(P ~ P') -- Tr(PP')/Tr(P) 

Evolution processes of an isolated quantum are represented by unitary 
operators in the same space H. More general transformations are represented 
by more general linear operators in the algebra L H ( X )  of linear operators 
on H(X) .  
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If  the quantum X is itself an ensemble of  subquanta x of odd statistics, 
then 

H = v h  

The Grassmann algebra over the Hilbert space h of x. If t~ and t~' are unit 
vectors in h, then the Grassmann product 

~I' =,hv, '  

is associated with a projector 

p = ~ItlI t* 

representing a pure class of pairs, v H  is graded thus: 1 has grade 0. The 
vectors t~ of  H are of  grade 1. The v product of g vectors is of grade g. 

One Hilbert space algebra L H ( X )  thus represents such diverse entities 
as classes, dynamical variables, and transformations associated with the 
quantum X. We may represent the quantum itself in L H ( X )  by the unit 
operator 1. Sets of X are represented, however, in V H ( X )  and LVH(X) .  

The yon Neumann quantum logic abstracts from the Hilbert space 
algebra L H ( X )  the projectors P, Q , . . . ,  the operation of disjunction or 
union P w Q, and the operation of  complementation or negation - .  Its 
fundamental superposition operation u represents incoherent superposi- 
tion. I therefore call this theory incoherent quantum logic. 

3. SET THEORY 

Set theory is used by many as a universal language for mathematics. 
I build sets from their elements not with the operation of union A w B, as 
is customary, but with the disjoin, defined only when A and B are disjoint 
and then equal to the join or union A w B. This makes no significant 
difference in the classical theory. 

I define 

A = 0  to mean A is undefined 

A = I  to mean A is the null set 

(because v is our product and the null set is its identity). Then the disjoin 
may be expressed in familiar terms by 

A v B = A u B  i f A c ~ B = l  

= 0 otherwise 

Its characteristic properties are associativity, commutativity, and nilpotency: 

A v A = O  
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I designate the power set of  a set X by v X since it consists of  all v 
products of  elements of  X. 

The other set operation needed to generate all sets is the brace {A}. 
Here {A} is the set whose only element is A. Sometimes it is convenient to 
write Cantor 's  brace {A} as Peano's tA. (In earlier papers I use B instead 
of ~.) 

3.1. Inductive Construction 

For simplicity (and also as a matter of principle) I consider only the 
class offinitary sets here, that is, those sets generated from the null set by 
a finite number  of  operations of  disjoining and bracing. I call this close 
SET. Henceforth unless otherwise mentioned all sets belong to SET. SET is 
generated from 1 according to the following postulates: 

P1. 1 is in SET. 
P2. I f  A and B are in SE'r, then {A} and A v B are. 
P3. {. �9 .}: SE'r-~ SET is injective with {A} v {A} = 0 for every A c SET. 

SEX (with multiplication v) is a commutative semigroup with 0 
and 1. 

P4. There are no relations among elements of  SEX except those that 
follow from P1-P3. 

In particular, 

0 v A = 0  

l v A = A  

A v A - - 0  

SET is graded thus. 1 has grade 0. Every brace {A} has grade 1. The v 
product of  g sets of  grade 1 has grade g. The grade of A is written GA. 
This grade is also called cardinality and multiplicity, depending on interpre- 
tation. The grade-g sets that belong to any class P form a subclass of  P 
designated by [G = g]P. 

A set is a pure description of a possibly plural entity. Each set symbol 
may also be used as a class, a possibly impure description of a single entity. 
For example, if A and B are pure first-grade sets, then A v B may be used 
either as a pair {A, B} or an impure description of  a singleton as being 
either A or B. In the set interpretation the grade is called cardinality; in 
the set interpretation, multiplicity or statistical weight. 

When X and Y are interpreted as classes, the probability of  a transition 
X ~ Y is the ratio of  statistical weights 

Prob(X ~ Y) = G ( X  n Y)/GX 
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For pure (grade 1) classes p, p '  the transition probabili ty Prob(p ~ p ' )  is 0 
unless p = p '  and is then 1. 

In set theory every entity is a set, and may be found in the universal 
sample space SET. The natural numbers 1, 2 , . . .  e N are usually represented 
as sets by taking 1 = {1} and defining (inductively) the successor N' of  N 
as N' := N v {N}. This then fixes the description of all entities that may be 
expressed in terms of  numbers. 

In set theory, all entities are described in the one class SEx. The 
invariance group of SET is trivial. Like the integers, sets are intrinsically 
different from each other. 

3.2. Conjoin 

Relative to any set U serving as universe of  discourse, there is a dual 
operation to the disjoin v called the conjoin A. The set U defines an 
involution mapping each set A c U into its complement  A' relative to U, 
mapping 1 into 1' = U, and each point p of  U into a copoint p'. By 

we mean that 

Schematically, we may write 

A ^ B = C  

A' v B' = C '  

A = V  p 

4. THE LOST SYMMETRIES OF QUANTU M L O G I C  

Let us now compare the quantum and set algebras. It is convenient to 
do so in terms of symmetries or invariance principles. 

4.1. Hierarchic lnvariance 

In set theory, for any entities X, Y , . . .  there is a new entity, the set 
{X} v { Y} v.  �9 �9 usually written {X, Y,. . .},  having them for elements. For 
its construction it suffices, if we regard the v product  as a given, to define 
the brace operation {. . -} ,  a map from SEW to [ G =  1]. This map is an 
injection of  [ G =  1]~  [ G =  1]; that is, it is 1-1 into. 

I f  a set is interpreted as a class of  predicate p, then {p} may be 
interpreted as a predicate about predicates, or second-order predicate, true 
by definition for the predicate p itself and for no other. 

By a hierarchic invariance I mean an endomorphism of the predicate 
algebra that increases order (which is the rank of the corresponding set) 
and thus goes up in the hierarchy of sets. In classical logic the brace 
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operation {. �9 .} on pure predicates may be uniquely extended to a hierarchic 
invariance. 

The yon Neumann quantum logic lacks a brace operation, and treats 
quantum predicates, which are first order, differently from predicates about 
quantum predicates, which are second order. There is a superposition 
principle for predicates about quanta, but not for predicates about predi- 
cates, or higher order predicates. The first-order logic is quantum, but the 
second-order one is classical. The logic and metalogic of the quantum theory 
are different. Sometimes this has been considered sufficient reason to dis- 
qualify quantum logic as a logic at all. In any case, the present quantum 
theory lacks hierarchic invariance, and the lack has been felt. 

4.2. Extensional Invarianee 

In set theory, every set S is the extension of some predicate P, that is, 
the collection of all entities enjoying the property P. I write S = Ext P for 
this relation. Corresponding to the disjoin A v B of sets there is a disjoin 
av/3 for predicates, defined only for mutually exclusive predicates, and 
then equal to their ordinary disjunction. Then 

Ext(avf l )  = Ext (a)v(Ext  13) 

Thus, Ext is an injection of  the class v-algebra into the set v-algebra. I call 
this familiar and classically trivial invariance property extensional invariance 
of the logic. 

In von Neumann's quantum theory, a predicate about the quantum X 
is represented by a subspace of H(X) ,  and a set of X 's  (or more precisely, 
a pure predicate about a set of X's) is represented by rays in VX. The 
extension of a predicate represented by a subspace P of H(X)  is represented 
by the Grassmann element of V H ( X )  representing the subspace P; that is, 
the Grassmann product of the vectors in a basis for P. More uniquely, it is 
represented by the ray in V H ( X )  containing that Grassmann element. There 
is no predicate about X corresponding to the general ray in V H ( X ) ,  only 
to the rays consisting of products of vectors, the Grassmann elements that 
Grassmann called "real." The yon Neumann quantum logic does not possess 
extensional invariance. The peculiar absence of any isomorphism between 
the theories of sets and classes in quantum theory has caused concern. 

4.3. Projective Invariance 

The classical predicate algebra of entitity X is invariant under the 
group of 1-1 maps of predicates into predicates respecting the v product. 
This is just the group of  permutations of the points of the sample space 
SX. The negation operation of the classical logic is invariant under the 
group of v (the group of all maps that preserve the disjoin relation). 



Coherent Quantum Logic 117 

The usual quantum predicate algebra is not invariant under the group 
of v. In quantum theory this group is the projective group of the linear 
space H(X) and does not respect the orthogonality relation of  H(X), nor 
therefore the orthocomplement relation of H(X), which is the negation of 
the quantum logic. 

This somewhat recondite invariance property merely rationalizes my 
choice below of the unimodular group over the unitary group. My ultimate 
reason for this preference is that relativistic binary spinors have a uni- 
modular group, and I wish to accommodate a quantum theory to them. 

5. QUANTUM SET THEORY 

As an example of a coherent quantum logic, I build a quantum set 
theory that strictly parallels the classical one, taking as basic two linear 
operations of  disjoin v and brace{. �9 .} corresponding to the two of classical 
set theory. For simplicity and familiarity I work with complex coefficients. 
Then in addition to v and { . . .}  as operations on creators there are the 
complex numbers C acting as multipliers and the operation of vector 
addition +. These are the basic operations of the quantum set theory. 

5.1. Inductive Construction 

The most general creator of quantum set theory--cal led a plexor for 
its subsequent topological interpretation as a simplex or complex--is  made 
from the complex number 1 by the operations of  v, { ~ } : = ~ ,  C, and +,  
according to the following postulates P1-P4: 

P1. 1 is in SEa-. 
P2. If  A and B are in SEa-, then {A} and AvB are. 
P3. t: SEa---> SEa` is a linear operator. SEa- (with C, v, +) is a complex 

Grassmann algebra over {SET} (the L image of  SEa-). 
P4. Elements of  SEa" obey no relations but P1-P3 and their con- 

sequences. 

In particular, 

OvA = 0 

l v A = A  

{A}v {A} = 0 

for any plexor A in SET. 
P1-P3 and the above relations correspond well to P1-P3 and the 

relations following them. It would be easy to frame the two systems so that 
they differ only in the principle of superposition. 

There then remains an important discord. SET has no symmetries, while 
SET has complex conjugation symmetry C. 
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Since an exact symmetry implies unobservable quantities, an 
operational theory should have none. This C symmetry is a consequence 
solely of our choice of field. I conjecture that a more fundamental coefficient 
system is real, and is in fact the integers. With that choice, SET would be 
not a linear space, but merely a free Abelian group. I drop this possibility 
for now. 

I designate the Grassmann grade in SET by G. 
The quantum set described by SET may be called abstract. If there is 

any quantum entity X that is not a set, there is also a concrete set theory 
SET(X) founded on X, containing X and also sets of X's,  for example. I 
do not require this concept here. 

Just as grade G counts factors, there is a rank R that counts nested 
braces. R is a linear operator on SET, defined inductively: 

R I = 0  

RL = t(R + 1) 

R(~lv~2)  = sup(R1, R2)(d~v~2) if Rt~, = R,d~ 

For example, we may construct a family N ~ of quantum sets 1 ~ 2 ~  
corresponding to the natural-number sets 1,2 . . . .  ~N of Section 3.1 by 
taking 1~  and defining (inductively) the successor N' of N as 
N' := Nv{N}, for any N in N ~ In just the same way, omitted as obvious, we 
make quantum sets corresponding to the integers •, designating the quantum 
set corresponding to the integer n by n ~ and the entire family by Z ~ 

Conspicuously lacking is a preferred inner product of SET. In that 
sense this is a nonunitary quantum theory. I assume (in order to connect 
with the theory of Bergmann spaces of Section 5.2) that each experimenter 
brings in an inner product, reducing the group from the general linear group 
to the unitary one. We recover the usual unitary quantum theory by restrict- 
ing experimenters to those with a common metric. 

To express a relativistic theory in SrT, we assign to each exosystem E 
a subspace of  SEa" and a basis ~1, �9 �9  ~N for that subspace. Permutations 
of this basis, unitary transformations of the subspace into itself, and general 
transformations of the subspace, possibly into another, are called transfor- 
mation theories of the third, second, and first levels, respectively, in Finkel- 
stein (1987). 

5.2. Conjoin, Grassmann Space, Peano Algebra 

To construct a conjoin operation, we must choose a finite-dimensional 
subspace U of grade 1 plexors in SET as universe of discourse and define 
the conjoin ^ relative to U. For this we must first give U the structure of a 
G r a s s m a n n  space. 
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A Grassmann space, as defined by Barnabei et al. (1985), is a linear 
space U provided with an antisymmetric scalar form, the Grassrnann bracket 
[~ ,02  �9 " �9 ON], of  maximum degree. The degree N is then the dimension 
of the linear space U. The coefficients of  the Grassmann bracket form an 
antisymmetric covariant tensor ~ with N indices, necessarily a multiple Of 
the Levi-Civita tensor density e, by a pseudoscalar  p: 3 = pc. Such a Grass- 
mann space is used as a spinor space in Misner et al. (1973), for example 
(with N = 2 and with Grassmann tensor 8 designated by e). 

Let DU be the dual space to U, and D V U  the dual space to VU. It 
is clear that D V U  is also a Grassmann algebra with product v, over DU. 
The Grassmann tensor 3 defines a mapping 3 : UU ~ DVU, carrying plexors 
of  grade g into dual plexors of  grade N - g .  The mapping 3 is called 
"lowering indices with 8." The inverse map ~-~ is called "raising indices 
with a-l . , ,  The 3 - '  image in V U  of the scalar 1 in DVU is a pseudoscalar 

i : = 3 - 1 1  

a product  of  all the elements of  a basis for U, and the Grassmann volume 
element of  the space U. I designate by U'  the linear subspace of V U 
consisting of  the elements of  V U of Grassmann grade N - 1 ,  sometimes 
called covectors or pseudovectors. 

The conjoin n is the ~ - '  transform of the disjoin v. That is, whenever 
covectors 3A, 3B, 3C obey 

3C = 3Av3B 

we set 

Schematically put, 

C = A a B  

^=a-'(v) 
The Grassmann algebra V U over U with coefficients C and product 

v is also a Grassmann algebra over U'  with coefficients C I  (the complex 
multiples of  I )  and product  ^. Following Barnabei et al. (1985), I call such 
a doubly Grassmann algebra a Peano algebra. 

To recapitulate, the linear space U has group GL(N, C). Giving a 
metric would reduce this group to U(N, C). I do n o t  do this. Instead, I 
asssume a Grassmann form, reducing the group to SL(N, C). 

The assumption that the world has such a local structure group leads 
to a version of Kaluza-Klein  theory in which the world is described as a 
Bergrnann manifold; meaning, a real, differentiable manifold M, provided 
at each point x ~  M with a Grassmann space air(x) of  spinors, and a 
differentiable map tr, called the spin vector, from the Hermitian tensors on 
air(x) to dM(x) ,  the tangent space to M at x, see Bergmann (1957), 
Finkelstein (1986), and Holm (1986). 
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5.3. Quantum Time-Space Complex 

As an application of this calculus, I construct a Lorentz-invariant 
quantum model for time space. It resembles the Feynman and Hibbs (1965) 
two-dimensional checkerboard model, but is composed of triangles instead 
of squares, is a four-dimensional time-space instead of two-dimensional, 
and its Lorentz invariance will be exact instead of approximate.  It resembles 
more closely the quantum checkerboard of Finkelstein (1967), which also 
has an exact local Lorentz invariance, but this model has a global one as well. 

Let a , , ,  be a two-index family of  independent monadic plexors, which 
shall be the vertices of  the time-space complex, with m, n ~ 7/. For example, 
we may take a l  and a2 to be two plexors independent of  the quantum 
integers 7/Q and set 

~ , . .  = { { , n  ~ v '~1} v { n  ~ v ~2}} 

for all m, n E 7/. 
Then the triangles 

~3ran : ~  OLrnn V Ol(m+l)n V Olin(n+1) 

and the "inverted" triangles 

fl~, = o~,n~ v o~(,~_1) ~ v a m ( ~ - l )  

form the triangular complex shown in Figure 1, familiar from the game of 
"Chinese checkers." I brace and multiply these triangles to form a plexor 

q '  = l-I {/3,..}{~'.} 
rn, n 

In principle, m and n should range over finite intervals--say,  M < ,n, 
n < M - - a n d  only at the end should we examine the limit M ~ oo. Finally, 
the quantum time-space complex is the "world plexor" 

W = ~ v ~ *  

Just as a spinor ~ may be called a linear square root of  a time-space vector 
w = ~ v ~*, W may be called a topological square root of time-space itself. 

I now consider the Lorentz invariance of W. Because �9 is made of 
triangles, when we fix one vertex and one triangle we define naturally a 
group SL(2, C) that transforms the other two vertices of the triangle into 
linear combinations of  themselves, called the local spin group. The complex 
air is thus provided with a natural isomorph of SL(2, C), the universal 
covering group of the Lorentz group, at each vertex of each triangle. This 
is the correspondent in the quantum theory of the local action of  SL(2, C) 
on the local spinor space of the time-space Bergmann manifold. Each 
element u of  the group SL(2, C) at vertex a of  triangle/3 in xIt acts thus. 
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Fig. 1. 

Let u be presented as a unimodular  matrix u~ with m, n = 0, 1. Then at 
vertex a = aoo in triangle/3 =/300, 

D(fl,  a, u): ~ " Ollrn l nUrn ,  Ol, o0 -> Ol, O0 

That is, the two vertices of/3 distinct from a are acted on by u as if they 
were "up"  and "down"  unit spinors 1' and ~. The action for other vertices 
a of  the same triangle is found by cyclic permutation of the three vertices. 
The action for other triangles /3,,, is found by translation of the above 
action in the (m, n) plane. The action for "inverted" triangles fl ~, is found 
by the inversion m ~ - m ,  n ~ -n .  

I now consider the Poincarr invariance of  W. First I extend each local 
spin group D(fl, a, u) to a global one G(fl, a, u) acting on the linear space 
spanned by all the simplices of  als, expressing Lorentz transformations not 
merely of  one triangle, but of  the entire t ime-space complex about the 
selected origin, a subgroup of the Poincar6 group. It suffices to construct 
the global transformation for the vertex aoo of  the triangle /3oo as origin, 
and then transfer the work to other vertices and triangles by cyclic permuta- 
tion, translation, and inversion as above. 

I extend the action of  the spin group on the vertices a,,n from its action 
on the three vertices aoo, aoa, a ,  of/300 so as to respect the topology of 
ai r. It suffices to consider the six infinitesimal generators o-~, of  the spin 
group. Of  these, the three boosts eros are imaginary multiples of  the three 
rotations er, u for s, t = 1, 2, 3, so that by linearity it suffices to consider the 
rotations. I consider first the generator er23 = era, which simply interchanges 
ao~ and a~o, leaving aoo fixed. Its global extension must therefore inter- 
change the triangles/3ol and tim. Since these have one point a l l  in common,  
this must be fixed, and oq2 must be interchanged with a21. In this way we 
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propagate the action of or I to the entire (m, n) plane. It is a reflection in 
the straight line through (0, 0) and (1, 1). 

Similarly, io-2, which interchanges aol and alo with change in sign, 
must be a reflection with change in sign in the same line. And finally the 
actions of o-1 and o'2 define that of o'3 --- -ioqo-2. This completes the definition 
of the global action G(a,/3, u) of SL(2, C). 

Every Poincar6 transformation is a product of Lorentz transformations 
about various origins. Therefore I define the quantum Poincar6 group PQ 
as the group generated by all the global transformations G(a,/3, u) for all 
vertices a, triangles/3, and spin transformations u. 

It is clear that analogues of  this construction may be carried out in 
every dimension N. I cannot help speculating on the physical consequences 
of such possibilities. A continuum approximation to such an N-dimensional 
plexor is presumably a Bergmann manifold, with structural group SL(N, C) 
instead of  SL(2, C), and therefore with time-space dimension n = N 2 instead 
of 4. In principle, Bergmann manifolds, like Riemannian ones,  may have 
arbitrarily high dimension. Riemannian manifolds, however, admit well- 
behaved dynamical principles in every dimension, and indeed with increas- 
ing number of arbitrary parameters as the dimension grows [Lovelock, 1971; 
Zumino, 1986; Deruelle and Madore 1986). On the contrary, it appears that 
Bergmann manifolds admit invariant second-order dynamical principles 
only for N = 2, n = 4 (Finkelstein, 1987). Then a higher dimensional world 
plexor cannot have a well-behaved continuum limit. It remains an attractive 
possibility that there are internal dimensions of microscopic extent, and 
that this unstable behavior of higher dimensional Bergmann manifolds is 
the continuum limit of a quantum dynamical process reducing the spinor 
dimension to N = 2 at the plexic level and the time-space dimension to 
n = 4, a higher dimensional analogue of a fluid filament decomposing into 
droplets in an atomizer. 

6. COHERENT QUANTUM L O G I C  

Let X be a fermionic quantum under study. Pure production processes 
("creations") of X are represented by rays in H(X). With the usual 
ambiguity we represent creations by individual nonzero vectors of H(X), 
creators. Pure counting processes (destructions) are represented dually by 
coplexors, elements of the dual space DH(X),  destructors. 

6.1. Predicates 

Both creations and destructions correspond to pure or point predicates 
of  classical theory, where the processual aspect is usually ignored. They 
may be termed initial and final pure predicates, respectively. 
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The Grassmann product 0vO of creators �9 and d~ represents the disjoin 
of 0 and ~b regarded as (initial) predicates. It gives the submaximal informa- 
tion that is conveyed in the usual quantum theory by the projector on the 
subspace span(0,  ~b) spanned by 0 and ~b. Its entropy (in natural units) is 
In 2. 

The most general predicate of  the usual quantum theory, a projector 
on some subspace P in the von Neumann theory, is now represented by a 
product plexor, the Grassmann product of the vectors in a basis for P. I 
return below to the interpretation of superpositions of product plexors. 

The logical disjoin is expressed by the v product, and the logical conjoin 
by the ^ product. A formal implication relation a-~fl for quantum predicates 
(and inclusion for classes) is expressed by the factorization 

fl = a v y for some 3' 

A negation operation requires a Hilbert structure on U. A material implica- 
tion a c fl seems to require still more structure. 

6.2. Assemblies 

The pair creator associated with 0 and ~ is now 0 v + .  This has grade 
2, hence entropy In 2, over H ( X ) ,  but grade 1, hence entropy 0, over V H (X ) .  
The most general pure creator of a set of X is an element of V H ( X ) .  

6.3. Variables 

In the usual theory a quantum variable V is represented by a linear 
operator V given by a spectral sum of the values V', V",... in the spectrum 
of V and the corresponding spectral projectors [ V = V ' ] , . . .  according to 

V= V'[V= V']+ V"[V= V"]+.  �9 �9 

The projector [ V = V'] represents the predicate V = V.' The spectral sum 
encodes the disjunction, 

Either the reading is V' and V = V', 
or 

the reading is V" and V = V", 
o r . . .  

This representation is rejected by Grassmann. Each g-dimensional 
projector [ V = V'] should now be replaced by a product plexor of grade g, 
the Grassmann product of g independent eigenvectors of the projector. I 
shall now assume these belong to SET and write { V = V'} for the brace of 
their product. 

If, however, we merely insert the plexors {V= V'} into the spectral 
sum in place of the projectors [ V = V'], we will not be able to recover the 
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plexors from the sum alone, not even up to multipliers. We require a new 
reversible coding. 

There is a straightforward translation of the above disjunction into 
quantum set theory, if we understand "the reading is V '"  to be a statement 
about the value of some meter variable M, such as a needle position. It is 

{{M = V'}v{ V = V'}}v{{M = V"}v{ V = V"}}v. �9 �9 

Here a v within braces represents composition of a predicate about 
the meter and a predicate about the endosystem. 

The old spectral sum does not mention the instrument explicitly and 
is useful as a generator of  unitary infinitesimal transformations. The new 
Grassmann product is explicit and, since it uses no metric, more invariant. 

7. C O H E R E N T  SOURCES 

There are many more predicates in coherent quantum logic than in 
von Neumann 's  quantum theory over the same linear space. The predicates 
of  von Neumann  correspond only to the (rays of  the) product vectors of 
the Grassmann algebra, the elements that Grassmann calls "real." Almost 
no Grassmann elements are factorizable into first-grade elements. I turn 
now to the meaning of these nonproducts. 

When a plexor is interpreted as a quantum set rather than a predicate, 
the "unreal"  elements appear  as quantum superpositions of  the real. For 
example, {1}+{1}{{1}} is a quantum superposition of the monad {1} a n d  
the dyad {1}{{1}}, with equal amplitude. (By an n-ad I mean a set with n 
elements, or a plexor of  Grassmann grade n.) I take the concept of  quantum 
superposition for granted here, even when different occupation numbers 
are superposed. This is not the problem. 

When the same plexor is interpreted as a predicate, however, we find 
a superposition of one predicate associated with a rat and another associated 
with a two-dimensional subspace. The two-dimensional element is already 
an incoherent superposition itself. We are not used to taking coherent 
superpositions of incoherent ones. 

I interpret these new predicates by using the new extensional symmetry 
between predicates and sets to convert them to sets, then interpreting the 
sets, and then inverting the extensional symmetry to return to predicates. 
For this the following concepts are useful. 

7.1. Hol is t ie  and Ensemble Interpretations 

A creator as predicate describes a mode of creation. There are two 
standard ways of relating a creator to experiment to keep in mind, Bohr's 
and von Neumann's ,  the individual and the ensemble. 
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They are much like two ways in which one relates a classical distribution 
function in phase space to experiment [as in Schr6dinger (1948)]. First a 
distribution function represents a population consisting of a number of 
individual endosystems, each in its own heat bath. But heat baths may be 
quite varied and complex, and difficult to analyze. Therefore we reinterpret 
the distribution function to describe a "warehouse" or ensemble of similar 
endosystems, so that each is in a standard heat bath consisting of replicas 
of itself. 

I shall refer to these two as the holistic and the ensemble interpretations 
of  the distribution function, respectively. Evidently the holistic interpreta- 
tion is more general than the ensemble one. A population of similar endosys- 
terns is a special heat bath, while the holistic interpretation allows for more 
general heat baths. 

In quantum theory the environment of the quantum, including the 
experimenter and the apparatus, replaces the heat bath of statistical thermo- 
dynamics. Heisenberg and Bohr represent an individual process with a 
creator ~,  describing the experimenter, the apparatus, and the quantum, 
the "entire situation." We may imagine writing the �9 on a black box that 
emits the individual quantum, as representative of the process. Bohr's is a 
holistic interpretation of  the quantum theory. 

Yon Neumann, however, replaces the process of creation, which (like 
a heat bath) may be quite complex and varied and difficult to analyze, by 
a warehouse (von Neumann's metaphor) of similar quanta. Now the mode 
of creation is simple and standard: random selection from a population of 
quanta of similar constitution. Therefore the creator may now be assigned 
to the variable element of  the process, the population. For von Neumann, 
therefore, a creator representing a predicate about X is associated with an 
ensemble of X's. This is the ensemble interpretation of the quantum theory. 
Again, the holistic interpretation is more general than the ensemble one. 
Selection from an ensemble is only one possible creation process. 

The Copenhagen interpretation permits us to attach a creator to an 
experiment in which a single photon comes from a given polarizer, even if 
the polarizer is smashed before any other photons get through. A holistic 
interpretation is thus also an individual interpretation. In the yon Neumann 
approach a creator applies only to a large ensemble of identically created 
photons. 

To avoid confusion I mention the widely used formulation in which 
is thought (much as in Schr/Sdinger's earliest theory) to be the endosystem 

itself, "collapsing" or "reducing" to another ~ in an unpredictable way 
when the experiment reaches the destruction phase. These concepts make 
the correspondence of quantum physics with classical physics quite unper- 
spicuous and are not used by Bohr or Heisenberg. Since this formulation 
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is often called Copenhagen but is not, I call it the pseudo-Copenhagen 
formulation. 

7.2. Interpretation of the New Predicates 

The ensemble viewpoint, however, does make it obvious how to inter- 
pret an "unreal"  or nonproduct creator xI v as a predicate. First we interpret 
xp as a set; this is easy. Then one creation process represented by xp consists 
of selecting one quantum at random from that set. 

In the von Neumann quantum theory, the populations are required to 
be uncorrelated, of the kind that may be represented in quantum set theory 
by product plexors. The quanta of two consecutive drawings have no 
coherent phase relations. 

In coherent quantum logic, however, the populations are allowed to 
be correlated. In case of a product xp, there is no such correlation and the 
theory reduces to the yon Neumann quantum theory. The correlated cases 
are the new "unreal" predicates. 

When in fact the individual viewpoint prevails, as when the predicate 
is represented by a more general process than selection from a population, 
any correlations between succeeding quanta from the same source must 
arise from correlations between each quantum and its source. Experiments 
with such coherent phase relations between endosystem and exosystem we 
may call "coherent." In the von Neumann theory, the experiment is incoher- 
ent, and has no phase relations with the emitted quantum. The prototype 
incoherent experiment with a proton spin is a polarizer-analyzer sequence. 
The creation phase of the experiment is a proton gun followed by a 
Stern-Gerlach magnet, and the destruction phase consists of a second 
Stern-Gerlach magnet followed by a proton counter. 

Coherent quantum logic allows from the start for the possibility of 
coherent sources. The prototype coherent experiment is a fission-fusion 
sequence. The creation phase uses a source of (say) ground-state nuclei, 
followed by a surface that transmits one nucleon and reflects the others. 
The possibly transmitted nucleon is the endosystem. The residual nucleus 
remains entirely in the exosystem and coherently propagates to the destruc- 
tion phase of the experiment, where it recombines with the emitted proton 
to form a nucleus, which then passes through an analyzer. The coherent 
logic reduces to the usual one when the nucleus is a single nucleon and the 
experiment ignores the phase between the nucleon and its source. 

8. CONCLUSIONS AND BEGINNINGS 

The usual Hilbert-spaee quantum theory of Heisenberg and Dirac, 
supplemented by the disjoin and conjoin Grassmann-product operations, 



Coherent Quantum Logic 127 

becomes a unitary coherent quantum logic, a more general logic than the 
lattice theory of von Neumann. We relativize its Hilbert space metric to 
arrive at the unimodular coherent quantum logic of this study. 

If X is any quantum and L =  L(X) its linear space of creators, a 
predicate about X in the coherent sense proposed here is represented by 
a ray in the Grassmann algebra V L  The usual projection operators onto 
subspaces of L(X) represent only the product elements of VL and omit 
their coherent superpositions. 

The correspondence between set and linear algebra (or between 
classical and quantum set theory) is now that of Table II. The remaining 
difference is the quantum principle of superposition (the + operation), 
which naturally has no correspondent in classical set theory. 

The quantum set theory presented here possesses invariance under the 
unimodular group, instead of the unitary group of the von Neumann theory, 
or the pseudo-orthogonal group of the Clifford-algebraic theory of Finkel- 
stein and Rodriguez (1986). 

Von Neumann's additive representation of submaximal information 
and Grassmann's multiplicative one are not mutually exclusive, but can 
cohabit the same theory. In the absence of a metric, both a composite 
quantum and submaximal information about one quantum may be repre- 
sented by a product creator ~ .  In the presence of a metric, a "one-body" 
projection operator of the usual kind can be made from ~ *  by tracing 
over all quanta but one. If  �9 is not a product but a superposition of 
products, the same procedure leads to a statistical operator. 

We have now explored three main roads to quantum logic. 
The classical inclusive disjunction (U)  leads to the lattice logic of von 

Neumann. This logic is highly asymmetric compared to classical set theory. 
The classical exclusive disjunction (xor) leads to a Clifford algebraic 

logic. This is less asymmetric, but requires an arbitrary choice of  signature 
and is therefore nonunique compared to classical set theory. Moreover, its 
fundamental plexors transform with spin 1 (under the orthogonal group). 
In such a theory spin 1/2 is not fundamental. 

TablelI.  Correspondence Between New Set Algebra and New 
Linear Algebra 

Set algebra Linear algebra 

Disjoin v v 
Conjoin ^ ^ 
Null 1 1 
Brace {. �9 .} {- . .}  
Sum + + 
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The disjoin (v)  leads to the Grassmann algebraic logic presented here. 
This is the most  plausible o f  the three theories: first, because o f  its greater 
symmetry;  second, because the un imodula r  groups o f  the Peano algebras 
in SET include the t ime-space structural group,  which is now to be regarded 
as the un imodula r  group SL(2, C) of  two-componen t  spinors, or  its higher 
dimensional  analogues S L ( N ,  C); now plexors t ransform as spinors or  
hyperspinors;  and third, because the i somorphism of  the algebras o f  classes 
and sets within SET seems to resolve basic conceptual  problems of  t ime-space 
structure. From the point  o f  view of  an electron, the collection o f  paths in 
t ime-space is a class o f  alternative possibilities, while f rom the point  of  
view of  quan tum gravity it is a set of  paths actually present. In SEar this 
one collection has one formula,  as in classical logic. 

The relation v = 0 ~  c between complex binary spinor ~ and real 
t ime-space four-vector  v has been known since Cartan. N o w  it is meaningful  
to ask whether  there is a similar relation V=al taI  t c  between a complex 
two-dimensional  plexor air and a four-dimensional  Hermit ian t ime-space 
plexor W. 
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